Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care Med ; 52(4): 596-606, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483219

RESUMEN

OBJECTIVES: We hypothesized that the immunosuppressive effects associated with antibiotics, sedatives, and catecholamines amplify sepsis-associated immune suppression through mitochondrial dysfunction, and there is a cumulative effect when used in combination. We thus sought to determine the impact of the exemplar drugs ciprofloxacin, propofol, and norepinephrine, used alone and in combination, at clinically relevant concentrations, on the ex vivo functionality of peripheral blood mononuclear cells (PBMCs) drawn from healthy, infected, and septic individuals. DESIGN: In vitro/ex vivo investigation. SETTING: University laboratory. SUBJECTS: Healthy volunteers, infected (nonseptic) patients in the emergency department, and septic ICU patients. INTERVENTIONS: PBMCs were isolated from these subjects and treated with ciprofloxacin (100 µg/mL), propofol (50 µg/mL), norepinephrine (10 µg/mL), or all three drugs combined, with and without lipopolysaccharide (100 ng/mL) for 6 or 24 hours. Comparison was made between study groups and against untreated cells. Measurements were made of cell viability, cytokine production, phagocytosis, human leukocyte antigen-DR (HLA-DR) status, mitochondrial membrane potential, mitochondrial reactive oxygen species production, and oxygen consumption. Gene expression in immune and metabolic pathways was investigated in PBMCs sampled from healthy volunteers coincubated with septic serum. MEASUREMENTS AND RESULTS: Coincubation with each of the drugs reduced cytokine production and phagocytosis in PBMCs isolated from septic patients, and healthy volunteers coincubated with septic serum. No effect was seen on HLA-DR surface expression. No cumulative effects were seen with the drug combination. Sepsis-induced changes in gene expression and mitochondrial functionality were not further affected by addition of any of the drugs. CONCLUSION: Drugs commonly used in critical care lead to significant immune dysfunction ex vivo and enhance sepsis-associated immunosuppression. Further studies are required to identify underlying mechanisms and potential impact on patient outcomes.


Asunto(s)
Propofol , Sepsis , Humanos , Catecolaminas , Hipnóticos y Sedantes/farmacología , Antibacterianos , Leucocitos Mononucleares , Norepinefrina , Terapia de Inmunosupresión , Ciprofloxacina , Antígenos HLA-DR , Citocinas
2.
Crit Care Explor ; 5(2): e0860, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751516

RESUMEN

To ascertain the association between cholesterol and triglyceride levels on ICU admission and mortality in patients with sepsis. DATA SOURCES: Systematic review and meta-analysis of published studies on PubMed and Embase. STUDY SELECTION: All observational studies reporting ICU admission cholesterol and triglyceride levels in critically ill patients with sepsis were included. Authors were contacted for further data. DATA EXTRACTION: Eighteen observational studies were identified, including 1,283 patients with a crude overall mortality of 33.3%. Data were assessed using Revman (Version 5.1, Cochrane Collaboration, Oxford, United Kingdom) and presented as mean difference (MD) with 95% CIs, p values, and I 2 values. DATA SYNTHESIS: Admission levels of total cholesterol (17 studies, 1,204 patients; MD = 0.52 mmol/L [0.27-0.77 mmol/L]; p < 0.001; I 2 = 91%), high-density lipoprotein (HDL)-cholesterol (14 studies, 991 patients; MD = 0.08 mmol/L [0.01-0.15 mmol/L]; p = 0.02; I 2 = 61%), and low-density lipoprotein (LDL)-cholesterol (15 studies, 1,017 patients; MD = 0.18 mmol/L [0.04-0.32 mmol/L]; p = 0.01; I 2 = 71%) were significantly lower in eventual nonsurvivors compared with survivors. No association was seen between admission triglyceride levels and mortality (15 studies, 1,070 patients; MD = 0.00 mmol/L [-0.16 to 0.15 mmol/L]; p = -0.95; I 2 = 79%). CONCLUSIONS: Mortality was associated with lower levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol, but not triglyceride levels, in patients admitted to ICU with sepsis. The impact of cholesterol replacement on patient outcomes in sepsis, particularly in at-risk groups, merits investigation.

3.
Am J Respir Crit Care Med ; 205(4): 388-396, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715007

RESUMEN

The biological functions of cholesterol are diverse, ranging from cell membrane integrity, cell membrane signaling, and immunity to the synthesis of steroid and sex hormones, vitamin D, bile acids, and oxysterols. Multiple studies have demonstrated hypocholesterolemia in sepsis, the degree of which is an excellent prognosticator of poor outcomes. However, the clinical significance of hypocholesterolemia has been largely unrecognized. We undertook a detailed review of the biological roles of cholesterol, the impact of sepsis, its reliability as a prognosticator in sepsis, and the potential utility of cholesterol as a treatment. Sepsis affects cholesterol synthesis, transport, and metabolism. This likely impacts its biological functions, including immunity, hormone and vitamin production, and cell membrane receptor sensitivity. Early preclinical studies show promise for cholesterol as a pleiotropic therapeutic agent. Hypocholesterolemia is a frequent condition in sepsis and an important early prognosticator. Low plasma concentrations are associated with wider changes in cholesterol metabolism and its functional roles, and these appear to play a significant role in sepsis pathophysiology. The therapeutic impact of cholesterol elevation warrants further investigation.


Asunto(s)
Colesterol/metabolismo , Hipercolesterolemia/etiología , Sepsis/fisiopatología , Colesterol/uso terapéutico , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/metabolismo , Pronóstico , Sepsis/diagnóstico , Sepsis/metabolismo
5.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806825

RESUMEN

Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.


Asunto(s)
Compuestos de Selenio/farmacología , Compuestos de Selenio/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Compuestos de Selenio/síntesis química , Compuestos de Selenio/química , Selenoproteínas/genética , Sodio/química , Selenito de Sodio/química
6.
Comput Struct Biotechnol J ; 18: 3678-3691, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304464

RESUMEN

Sepsis remains a major cause of death despite advances in medical care. Metabolic deregulation is an important component of the survival process. Metabolomic analysis allows profiling of critical metabolic functions with the potential to classify patient outcome. Our prospective longitudinal characterization of 33 septic and non-septic critically ill patients showed that deviations, independent of direction, in plasma levels of lipid metabolites were associated with sepsis mortality. We identified a coupling of metabolic signatures between liver and plasma of a rat sepsis model that allowed us to apply a human kinetic model of mitochondrial beta-oxidation to reveal differing enzyme concentrations for medium/short-chain hydroxyacyl-CoA dehydrogenase (elevated in survivors) and crotonase (elevated in non-survivors). These data suggest a need to monitor cellular energy metabolism beyond the available biomarkers. A loss of metabolic adaptation appears to be reflected by an inability to maintain cellular (fatty acid) metabolism within a "corridor of safety".

7.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R584-R593, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789789

RESUMEN

An impaired capacity of muscle to regenerate after critical illness results in long-term functional disability. We previously described in a long-term rat peritonitis model that gastrocnemius displays near-normal histology whereas soleus demonstrates a necrotizing phenotype. We thus investigated the link between the necrotizing phenotype of critical illness myopathy and proteasome activity in these two limb muscles. We studied male Wistar rats that underwent an intraperitoneal injection of the fungal cell wall constituent zymosan or n-saline as a sham-treated control. Rats (n = 74) were killed at 2, 7, and 14 days postintervention with gastrocnemius and soleus muscle removed and studied ex vivo. Zymosan-treated animals displayed an initial reduction of body weight but a persistent decrease in mass of both lower hindlimb muscles. Zymosan increased chymotrypsin- and trypsin-like proteasome activities in gastrocnemius at days 2 and 7 but in soleus at day 2 only. Activated caspases-3 and -9, polyubiquitin proteins, and 14-kDa fragments of myofibrillar actin (proteasome substrates) remained persistently increased from day 2 to day 14 in soleus but not in gastrocnemius. These results suggest that a relative proteasome deficiency in soleus is associated with a necrotizing phenotype during long-term critical illness. Rescuing proteasome clearance may offer a potential therapeutic option to prevent long-term functional disability in critically ill patients.


Asunto(s)
Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Proteínas Musculares/metabolismo , Peritonitis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Regeneración , Animales , Autofagia , Enfermedad Crítica , Modelos Animales de Enfermedad , Miembro Posterior , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Necrosis , Peritonitis/patología , Peritonitis/fisiopatología , Fenotipo , Proteolisis , Ratas Wistar , Factores de Tiempo , Ubiquitinación
8.
J Clin Invest ; 122(6): 2130-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22585571

RESUMEN

Glucocorticoids acting through the glucocorticoid receptor (GR) inhibit TNF-induced lethal inflammation. Here, we demonstrate that GR dimerization plays a role in reducing TNF sensitivity. In mutant mice unable to dimerize GR, we found that TNF failed to induce MAPK phosphatase 1 (MKP1). We assessed TNF sensitivity in Mkp1(-/-) mice and found increased inflammatory gene induction in livers, increased circulating cytokines, cell death in intestinal epithelium, severe intestinal inflammation, hypothermia, and death. Mkp1(-/-) mice had increased levels of phosphorylated JNK, which promotes apoptosis, in liver tissue. We further examined JNK-deficient mice for their response to TNF. Although Jnk1(-/-) mice showed no change in sensitivity to TNF, Jnk2(-/-) mice were significantly protected against TNF, identifying JNK2 as an essential player in inflammation induced by TNF. Furthermore, we found that loss of Jnk2 partially rescued the increased sensitivity of Mkp1(-/-) and mutant GR mice to TNF. Our data show that GR dimerization inhibits JNK2 through MKP1 and protects from TNF-induced apoptosis and lethal inflammation.


Asunto(s)
Apoptosis/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Factor de Necrosis Tumoral alfa/efectos adversos , Animales , Apoptosis/genética , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/genética , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Mucosa Intestinal/patología , Hígado/patología , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Fosforilación/genética , Multimerización de Proteína , Receptores de Glucocorticoides/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
9.
Cell Metab ; 14(1): 123-30, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21723510

RESUMEN

Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairment in humans and liver-specific deficiency of the glucocorticoid receptor (GR) in mice disrupts the normal changes in systemic BA distribution during the fasted-to-fed transition. Fasted mice with hepatocyte-specific GR knockdown had smaller gallbladder BA content and were more susceptible to developing cholesterol gallstones when fed a cholesterol-rich diet. Hepatic GR deficiency impaired liver BA uptake/transport via lower expression of the major hepatocyte basolateral BA transporter, Na(+)-taurocholate transport protein (Ntcp/Slc10a1), which affected dietary fat absorption and brown adipose tissue activation. Our results demonstrate a role of the HPA axis in the endocrine regulation of BA homeostasis through the liver GR control of enterohepatic BA recycling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Ácidos y Sales Biliares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo
10.
J Biol Chem ; 286(30): 26555-67, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21646349

RESUMEN

As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved.


Asunto(s)
Regulación hacia Abajo , Receptores de Glucocorticoides/biosíntesis , Choque/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Femenino , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Glucocorticoides/genética , Choque/inducido químicamente , Choque/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...